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Canonical Hamiltonian formulation of the nonlinear Schrödinger equation in a one-dimensional,
periodic Kerr medium
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A canonical Hamiltonian formulation of the nonlinear Schro¨dinger equation has been derived in this paper.
This formulation governs the dynamics of pulse propagation in a one-dimensional, periodic Kerr medium when
the frequency content of the pulse is sufficiently narrow relative to a carrier frequency, and sufficiently far
removed from a photonic band gap of the medium. Our Hamiltonian is numerically equal to the energy, and our
fields obey canonical commutation relations, so the theory can easily be quantized. We clarify the nature of the
conserved quantities associated with simple symmetries.
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I. INTRODUCTION

The investigation of optical pulse propagation in nonl
ear Kerr media often proceedsvia the slowly varying enve-
lope function approximation@1–3#, wherein the frequency
content of an optical pulse is considered to be narrowly c

tered around a given carrier frequencyv̄. This approxima-
tion allows one to separate the pulse dynamics, containe
the slowly varying envelope functions, from the phase ac
mulation due to the carrier frequency. When applied to
homogenous, isotropic medium, this approach has been
to derive the familiar nonlinear Schro¨dinger equation
~NLSE! @1# as the dynamical equations for the envelo
function; when applied to a periodic structure, the appro
has been used to derive both a NLSE@4,5# and a set of
nonlinear coupled mode equations~CME! @2,5#. In the pres-
ence of birefringence, a set of coupled NLSEs have b
derived for a homogeneous medium@3#; for a periodic me-
dium, both a set of coupled NLSEs and a set of nonlin
CMEs have been derived@6#. The dynamics of these
envelope-function equations have often been studied by
structing a Hamiltonian formulation of the dynamical equ
tions @7–11#. From such a Hamiltonian two conserved qua
tities can easily be identified, one energylike, and o
momentumlike. But the Hamiltonian itself is not equal to t
energylike quantity, leading to a certain confusion in the
erature@12,13#. One would naively expect that a nonline
optical system would have two conserved quantities—ene
and momentum. Since the Hamiltonian itself is also co
served, however, the optical system hasthree conserved
quantities, and the interpretation of this third conserv
quantity has presented some difficulties@7,8,12#. A correct
understanding of these three conserved quantities is the
of this paper.

In Sec. II of this paper we construct a canonical Ham
tonian formulation of Maxwell’s equations in a one
dimensional, periodic medium with a Kerr nonlinearity, u
ing a dual field first proposed by Hillery and Mlodinow@14#;
see also@15,16#; although we here only consider classic
fields we formally replace the canonical Poisson brack
with the associated commutators, with a view towards ev
tually quantizing the theory. Bycanonicalwe mean that our
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Hamiltonian can be used to derive the exact equations
motion using the canonical commutation relations,and that it
is numerically equal to the energy of the~nonlinear! electro-
magnetic field. In Sec. III we specialize our formulation
consider an effective field that varies slowly relative to t
underlying Bloch functions of the periodic medium@17#. Use
of these Bloch functions means that our resulting equati
are valid in the presence of a strong periodic variation in
dielectric permittivity of the medium. We then generate
reduced canonical Hamiltonian in terms of this effecti
field. The dynamical equation governed by this reduc
Hamiltonian is the familiar NLSE. In Sec. IV we discuss th
relationship between our effective fields, and an altern
approach in which the fields of interest are considered slo
varying functions that modulate a given Bloch function.
Sec. V we use the reduced Hamiltonian, which, within o
approximations, is conserved and equal to the energy
identify two more conserved quantities: the momentum,
sociated with space-translation symmetry; and a conse
charge, associated with phase-translation symmetry.

In Sec. VI we discuss the use of the dual field and co
pare it with other fields used in the literature to derive t
NLSE in periodic media. Although we have concentrated
deriving a NLSE, our method can be used to construct
duced canonical Hamiltonians associated with the nonlin
coupled mode equations in both isotropic and birefringe
periodic media. Furthermore, the dual field is generaliza
to two and three dimensions@15#, so it can likely be used to
derive equations in higher-dimensional photonic band g
materials.

II. CANONICAL FORMULATION OF MAXWELL’S
EQUATIONS

We begin with Maxwell’s equations in a one-dimension
nonmagnetic medium

]zE~z,t !52m0] tH~z,t !, ~1!

]zH~z,t !52] tD~z,t !,

where

D5«0E1P, ~2!
©2002 The American Physical Society01-1
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P is the full polarization,«0 is the permittivity of free space
andm0 is the permeability of free space. To construct a
nonical formulation of these dynamical equations, we int
duce a dual fieldL @16#, which satisfies

]zL5D, ~3!

] tL52H.

The dual field will serve as the canonical coordinate fie
We then define a Hamiltonian density@16#

H~z,t !5
1

2m0
p21U~Lz!, ~4!

where we have introduced the conjugate momentum fi
p(z,t), and where

U~D !5E
0

D

EdD. ~5!

The canonical equations of motion that follow from th
Hamiltonian density are

] tp52
]H
]L

1
]

]z F ]H
]Lz

G , ~6!

] tL5
]H
]p

,

which, using Eqs.~3! and ~4! are found to be precisely Eq
~1!. Alternately, one can recover~1! by using the equal-time
commutators@16#

@L~z,t !,p~z8,t !#5 i\d~z2z8! ~7!

with equations of motion@16#

i\
]p

]t
5@p,H#, ~8!

i\
]L

]t
5@L,H#,

where the associated Hamiltonian

H5E
2`

`

H~z,t !dz ~9!

is numerically equal to@16,18#

E5E
2`

` Fm0

2
H21S E

0

D

EdDD Gdz, ~10!

the energy in the electromagnetic field.
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-
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A. Linear, periodic medium

For a linear, periodic medium

H5HL5E
2`

`

dzS 1

2m0
p21

Lz
2

2«~z!
D , ~11!

where «(z)5«(z1d) is the dielectric permittivity, with
D(z,t)5«(z)E(z,t), and whered is the periodicity of the
lattice. Using the equations of motion~6! we find a linear
wave equation thatL must satisfy

m0«2~z!] ttL5«~z!]zzL2]zL]z«~z!. ~12!

To determine the Bloch functions of Eq.~12!, we use the
usual ansatz@19#

L~z,t !}um~z!e2 ivmt1c.c., ~13!

where c.c. stands for ‘‘complex conjugate.’’ Substitution
Eq. ~13! in the wave equation~12! gives an equation for the
Bloch functionsum

H 1

«~z!
]zz1]z@1/«~z!#J um52m0vm

2 um . ~14!

Because the operator in the equation is self-adjoint, it adm
real eigenvalues and orthogonal eigenfunctions.

From Bloch’s theorem@19#, we can write our Bloch func-
tions in terms of a discrete band indexm, and a reduced
wave numberk (2p/d,k<p/d), so thatum→umk , with

umk~z!5umk~z!eikz, ~15!

where theumk have the periodicity of the lattice,umk(z)
5umk(z1d). We note thatvmk5vm(2k) , so we can choose
our Bloch functions such thatumk(z)5um(2k)* . We normal-
ize the Bloch functionsvia

E
2L/2

L/2

umk* ~z!um8k8~z!dz5Ndmm8dkk8 , ~16!

whereL is a normalization length, and where we have ch
sen the normalization constantN5L/d, which is then iden-
tified as the number of unit cells in the normalization leng
This choice of normalization means that our wave numb
take on only discrete values, and that the difference betw
two adjacent wave numbers is 2p/L. The Bloch functions
also satisfy

E
2L/2

L/2 umk8* ~z!um8k8
8 ~z!

«~z!
dz5m0vmk

2 Ndmm8dkk8 , ~17!

whereumk8 5dumk /dz; this follows by using Eqs.~16! and
~14!. A typical dispersion relation in this reduced-wave num
ber scheme is sketched in Fig. 1; this dispersion relatio
exactly equivalent to the dispersion relation associated w
the more familiar electric field Bloch functions.
1-2
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B. Periodic medium with a Kerr nonlinearity

We now turn to a periodic, Kerr nonlinear medium. A
frequencies far below any resonances in the medium, for
one-dimensional geometry, the constitutive relation takes
form @1#

D5«~z!E1«0x (3)~z!E3, ~18!

where we assume that the nonlinearity coefficientx (3)(z) is
periodic with periodd, x (3)(z1d)5x (3)(z). To construct the
Hamiltonian we first invert Eq.~18! to get

E.
D

«~z!
2«0x (3)~z!

D3

«4~z!
, ~19!

where we have assumed thatx (3)E3!E. This assumption of
a weak nonlinearity is justified on physical grounds: we o
want to discuss third-order nonlinear effects, but if the
sumption of a weakx (3) were not valid, then we would hav
no justification for not including fifth or higher order nonlin
ear effects in Eq.~18!. Using Eq.~19! in Eq. ~5! we find

H5HL1HNL5HL2E
2L/2

L/2

dz
«0x (3)~z!Lz

4~z!

4«4~z!
, ~20!

FIG. 1. Sketch of a dispersion relation for a one-dimension
linear, periodic medium in the reduced wave number scheme.
wave numbers are normalized top/d. The frequencies are norma
ized to the center frequency of the first photonic band gap. Note
the introduction of the normalization lengthL means that the wave
numbers are discretized with adjacent wave numbers separate
2p/L. The solid band in the diagram represents the frequency c
tent of a forward-propagating pulse whose dynamics are well
scribed by the theory in this paper. The frequencies are confine
a narrow range so that third- and higher-order dispersion can
ignored. If the frequency content is brought closer to the photo
band gap, then the range of frequencies must be made more na
since near the gap the curvature of the dispersion relation is q
high.
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whereHL is defined above~11! andHNL is the portion of the
full Hamiltonian responsible for the nonlinearity in the d
namics of the electromagnetic field. The expression~20!,
when used as a Hamiltonian with equations of motion~6!,
leads to the correct equation of motion forL within the
approximation~19! of a weak nonlinearity

m0«2~z!] ttL5«~z!]zzL2@]zL#@]z«~z!#

2«0

]

]z H x (3)~z!Lz
4

«4~z!
J . ~21!

This expression can, of course, be verified by usingL di-
rectly in Maxwell’s equations.

It will be useful to expressH in terms of the classica
analog of the raising and lowering operators associated w
the Bloch modes. To do so, we first expandL(z,t) and
p(z,t) in terms of the Bloch modes of the periodic medium
We let

p~z,t !5 (
m51

`

(
k52p/d

p/d

pmk~ t !umk~z!, ~22!

L~z,t !5 (
m51

`

(
k52p/d

p/d

Lmk~ t !umk~z!.

The reality ofp and L requires thatpmk* 5pm(2k) and Lmk*
5Lm(2k) , so we can express the four complex quantit
pmk , Lmk , pm(2k) , and Lm(2k) in terms of two complex
mode amplitudesamk(t) andam(2k)(t)

Lmk~ t !5A \

2Nm0vmk
~amk1am(2k)

† !, ~23!

pmk~ t !52 iA\m0vmk

2N
~amk2am(2k)

† !,

and correspondingly forLm(2k) and pm(2k) . Using the
amk(t), the expansion~22! becomes

L~z,t !5 (
m51

`

(
k
A \

2Nm0vmk
@amk~ t !umk~z!1c.c.#,

~24!

p~z,t !52 i (
m51

`

(
k
A\m0vmk

2N
@amk~ t !umk~z!2c.c.#.

We note that sinceL(z,t) andp(z,t) are written in terms of
Bloch functions that are normalized in the region2L/2,z
,L/2, they will become periodic with periodL. This has no
effect on the underlying physics, because we can always c
sider the limit whereL→`. However, it does mean tha
when evaluating the Hamiltonian~20! in terms of theL(z,t)
andp(z,t) given by Eq.~24!, we must restrict the integration
to the region2L/2,z,L/2; and when evaluating the equa
time commutation relations~7! betweenL(z,t) andp(z8,t)
we must restrict bothz andz8 to be within6L/2. Adhering
to these restrictions, we find that using Eq.~24! in Eq. ~20!,
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and applying the orthogonality relations~16! to the portion
of the Hamiltonian that generates the linear dynamics,
full Hamiltonian becomes

H5(
mk

\vmkuamku2

2
\2«0

16N2m0
2E

2L/2

L/2

dz
x (3)~z!

«4~z!
F)

i 51

4

(
miki

~amiki
umiki

8 1c.c.!

Avmiki

G .

~25!

Adopting commutation relations

@amk~ t !,am8k8
†

~ t !#5dmm8dkk8 , ~26!

@amk~ t !,am8k8~ t !#50

guarantees the commutation relations betweenL(z,t) and
p(z8,t) ~7! for z andz8 within the normalization length. In
terms of the mode amplitudes, the canonical equations
motion ~8! become@18,20#

i
damk

dt
5

1

\
@amk ,H#, ~27!

which, using Eq.~25! for H, give

damk

dt
52 ivmkamk1

i\«0

4N2m0
2E

2L/2

L/2

dz
umk8 x (3)

Avmk«
4

3F)
i 51

3

(
miki

~amiki
umiki
8 1c.c.!

Avmiki

G , ~28!

where we have suppressed thez dependence ofumk8 (z),
x (3)(z) and «(z), and the time dependence of theamk(t).
This Eq.~28! is equivalent to Eqs.~1! and~2! with Eq. ~19!.

III. REDUCED HAMILTONIAN AND THE NLSE

In this section we recast our Hamiltonian in a form mo
suitable to the study of pulse propagation. We build effect
fields gm(z,t), as a Fourier superposition of theamk , and
assume that the effective fields are centred at a given w
number k̄, which corresponds to a frequencyvmk̄ . The
gm(z,t) can be used to rewrite the Hamiltonian~25! without
any loss of generality.

This effective field approach is most valuable when
spread in the frequency content of the field is narrow rela
to a central frequencyvmk that lies in bandm5m̄ with wave
numberk̄. We assume thatvmk is far from a photonic band
gap, and that the frequency content of the pulse is enti
contained within bandm̄. Because the frequency content
our effective fields is narrowly centered aroundvmk , we can
expand a frequencyvm̄( k̄1K) in a Taylor series, which will
involve the local group velocity and group velocity dispe
sion. We use a smallness parameterh, which we quantify
below, to characterize the strength of the resulting term
04660
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our Hamiltonian. We examine the situation where the ter
that are related to the group velocity of the pulse areO(h),
and the terms that are related to the Kerr nonlinearity and
group velocity dispersion of the pulse are bothO(h2) rela-
tive to the largest terms in the Hamiltonian. Higher-ord
nonlinear effects, and higher-order dispersion are not con
ered, because both are assumed to beO(h3). We denote the
resulting Hamiltonian the ‘‘reduced Hamiltonian’’ since it
equal to the energy of the electromagnetic field toO(h2).
Although our model formally includes third harmonic ge
eration, we ignore its effects in the following. We are jus
fied in doing so by physical considerations. We have
sumed that the underlying material is nondispersive, a
while this may be valid for frequencies nearvmk , it will
likely not be valid for frequency ranges extending tov
.3vmk ; furthermore, the assumption of no absorption
v.3vmk will likely be in error. We expect, on physica
grounds, that in many cases the actual material disper
and absorption will make any buildup of the third harmon
unlikely, so that our model will be adequate.

We start by using theamk(t) to define an effective field
gm(z,t) that is centered around the wave numberk5 k̄,

gm~z,t !5A1

L(
k

amk~ t !ei (k2 k̄)z,

5A1

L(
K

gmK~ t !eiKz, ~29!

where we have introduced the detuning

K5k2 k̄ ~30!

and the mode amplitudes

gmK~ t !5am( k̄1K)~ t !. ~31!

Ultimately we seek to describe the evolution of our fie
L(z,t), which we assume is a smoothly varying function
z as we move from a point in a unit cell to the correspond
point in a neighboring unit cell. The functiongm(z,t) will be
one such smoothly varying function ofz only if the amk(t)
are smoothly varying functions ofk. To ensure that the
amk(t) vary smoothly ink, one must choose the Bloch func
tions to vary smoothly ink, which in practice can be done
for example, using ak•p expansion@5,21# aboutk̄.

Using Eq.~26!, we find that the equal-time commutatio
relations for thegm(z,t) are

@gm~z,t !,gm8
†

~z8,t !#5dmm8d~z2z8!, ~32!

for z and z8 both in our normalization lengthL, where the
Dirac delta functiond(z2z8) in Eq. ~32! strictly appears
only in theL→` limit. By inverting Eq. ~29! we find

am( k̄1K)~ t !5
1

AL
E

2L/2

L/2

dzgm~z,t !e2 iKz. ~33!
1-4
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CANONICAL HAMILTONIAN FORMULATION OF TH E . . . PHYSICAL REVIEW E 65 046601
Using Eq.~33!, the Hamiltonian~25! can be written in terms
of the gm(z,t).

In the following we restrict ourselves to consideration
electromagnetic fields for which att50 the wave numbers o
the pulse are contained entirely in bandm5m̄, and narrowly
centered aroundk̄, so that, replacing theam( k̄1K)(t) with the
gmK(t), and restricting the summation in the Hamiltonia
~25! to one band, we find a reduced Hamiltonian

HR5(
K

\vm̄( k̄1K)ugm̄Ku22
\2«0

16N2m0
2E

2L/2

L/2

dz
x (3)~z!

«4~z!

3F)
i 51

4

(
Ki

~gm̄Ki
um̄( k̄1Ki )
8 1c.c.!

Avm̄( k̄1Ki )
G , ~34!

where theKi are wave number detunings. Since we are c
sidering only one band,m5m̄, we drop them subscript in
the remainder of the paper. We stress that the Hamilton
~34! is still exactly equal to the energy in the system at
50. At later times the nonlinear interaction will genera
new frequencies, but in the following we ignore third ha
monic generation, as discussed, so that for reasonable p
gation times and pulse intensities the new frequencies
are generated will still lie in bandm5m̄, and the reduced
Hamiltonian will still represent the exact energy in the sy
tem. Furthermore, we assume that att50 only forward-
traveling waves are present, so that at later times there
be no interaction with any backward-traveling waves.

We first consider the linear portion of the reduced Ham
tonian ~34!. We expand the frequencyv ( k̄1K) as

v ( k̄1K)5v̄1Kv̄81
1

2
K2v̄91•••, ~35!

where v̄5v k̄ , v̄85]v ( k̄1K) /]K cK50 and v̄9
5]2v ( k̄1K) /]K2cK50. Substituting this expression fo
v ( k̄1K) and the expression for the effective fields~29! into
the reduced Hamiltonian~34!, we find that the portion of the
reduced Hamiltonian associated with the linear dynamics
the field is

HL
R5\v̄E

2L/2

L/2

dzS ugu21
i

2

v̄8

v̄
~g]zg

†2c.c.!

1
1

2

v̄9

v̄
u]zgu2D . ~36!

The exact Hamiltonian that generates the linear dynamic
given by

HL5HL
R1O~h3!,

whereh is the smallness parameter used to characterize
relative strength of terms in the reduced Hamiltonian.
can quantifyh by setting it to be the larger of
04660
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h5
v̄

v̄8
zw , h52

v̄8

v̄9
zw , ~37!

wherezw is an appropriate measure of the width of the pul
As discussed, the third- and higher-order dispersion te
are considered to beO(h3). The values ofv̄8 and v̄9 will
depend on the dispersion relation itself; a variety of te
niques exist to determine the dispersion relation of a o
dimensional, periodic system@19#.

Turning to the portion of the reduced Hamiltonian~34!
that generates the nonlinear dynamics of the fields, we
recall that we are dealing with a weak nonlinearity@see note
following Eq. ~19!#. We quantify the weakness of this non
linearity by asserting that the ratio of the largest nonline
term to the largest linear term isO(h2). Because we are only
keeping terms inHR to O(h2), this means that we can re
placeu ( k̄1K)

8 with u k̄
8eiKz, and the small error that it intro

duces will enter at the next level in the perturbation. Sim
larly, we replacev ( k̄1K) with v̄. The value ofh set above
determines the strength of the nonlinear term that can
accomodated by this theory. For a stronger nonlinear te
~either through a largerx (3), or through a higher intensity in
the pulse!, more complicated nonlinear effects must be
cluded. We find

HNL
R 52

\2«0

16N2m0
2v̄2E2L/2

L/2

dz
x (3)~z!

«4~z!

3F)
i 51

4

(
Ki

$gKi
eiK izu k̄

8~z!1c.c.%G . ~38!

An integral that will be important inHNL
R is

I 12345E
2L/2

L/2

dzexp$ i ~K12K21K32K4!z%

3Fx (3)~z!

«4~z!
uu k̄

8~z!u4G . ~39!

The portion in the square brackets contains only perio
quantities, with periodd, and can be expanded as a Four
series

x (3)

«4
uu k̄

8u45 (
n50

`

b (n)ei2npz/d, ~40!

with

b (n)5E
0

d

dz
x (3)

«4
uu k̄

8u4e2 i2npz/d, ~41!

where the integration proceeds over the lengthd of one unit
cell. Using the expansion~40! in the integral~39! we find
1-5
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SURESH PEREIRA AND J. E. SIPE PHYSICAL REVIEW E65 046601
I 12345(
n

b (n)E
2L/2

L/2

dzexp$ i ~K12K21K32K4

12np/d!z%. ~42!

The integral will be zero unless (K12K21K32K4
12np/d)50. But we have previously stipulated that all o
detunings are!p/d, so I K1234

only has a value forn50.
This means

I 12345b (0)E
2L/2

L/2

dzexp$ i ~K12K21K32K4!z% ~43!

and

(
K1K2K3K4

gK1
gK2

† gK3
gK4

† I 12345b0E
2L/2

L/2

dzug~z,t !u4.

~44!

In writing down I 1234 we are only considering the inte
grals that will arise in Eq.~38! that contain terms with two
complex conjugates. Terms with zero or four complex co
jugates lead to third harmonic generation, which, as d
cussed, is ignored here. Terms with one or three comp
conjugates vanish for the following reason. The expans
~40! could be made because theeik̄z portions of the Bloch
function @see Eq.~15!# cancel out. If, on the other hand, w
consider terms where either one or three of the Bloch fu
tions are conjugated, then the expansion correspondin
Eq. ~40! would be multiplied by a prefactore6 i2k̄z. The in-
tegral corresponding to Eq.~42! would then be nonzero only
if ( K12K21K32K412np/d62k̄)50 which, since the de-
tunings are all small, can never occur, which, since the
tunings are all small, cannot occur unlessk50 or k5p/d.
We defer a discussion of these latter cases to a later pa

From Eq.~38!, there are six ways to generate terms
volving two complex conjugates so including counting co
siderations we find

HNL
R 52

1

2
aE

2L/2

L/2

dzug~z,t !u4, ~45!

where, to simplify the expressions, we have defined the n
linear coefficient

a5
3

4

\2«0

N2m0
2v̄2E0

d

dz
x (3)~z!

«4~z!
uu k̄~z!u4. ~46!

Collecting our results~36! and ~45!, we find a reduced
Hamiltonian

HR5E
2L/2

L/2

dzH~z,t ! ~47!

with a reduced Hamiltonian density
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H R~z,t !5\v̄ugu21 i
\v̄8

2
~g]zg

†2c.c.!1
\v̄9

2
u]zgu2

2
a

2
ugu4, ~48!

where we have suppressed thez,t dependence ofg(z,t). The
Heisenberg equations of motion follow from Eq.~27!

i ] tg~z,t !5
1

\
@g~z,t !,HR~z,t !#, ~49!

so that, using the commutation relations~32!, the differential
equation that governs the dynamics of theg(z,t) field is

i ] tg~z,t !5v̄g~z,t !2 i v̄8]zg~z,t !2 1
2 v̄9]zzg~z,t !

2aug~z,t !u2g~z,t !. ~50!

IV. EFFECTIVE FIELDS AND ENVELOPE FUNCTIONS

In our treatment of the NLSE, we have constructed
effective field as a Fourier superposition of the mode am
tudes in the Hamiltonian. This differs from previous deriv
tions of the NLSE in a periodic medium, in which the phys
cal field of interest~often the electric field! was expanded as
a slowly varying envelope function that modulated a Blo
function at a given wave numberk̄ and band indexm̄ @5,6#.
The derived NLSE then gave the dynamics of the slow
varying envelope function. In this section we relate our
fective fields to the envelope functions that would emerge
we used the dual field in the approach of previous deri
tions of the NLSE.

We start by noting that an arbitraryumk(z) can be written
as

umk~z!5(
c

gm( k̄1K)
ck̄

uck̄~z!, ~51!

where the detunings are defined in Eq.~30!, and where the

value of the connectionsgm( k̄1K)
ck̄ can be determined usin

‘‘ k•p’’ theory @5,21#. Using this expansion for theumk we
find

umk5(
c

gm( k̄1K)
ck̄

uck̄e
iKz, ~52!

and, using Eq.~52! in Eq. ~24!, we find

L~z,t !5(
c

f c~z,t !uck̄~z!1c.c., ~53!

where

f c~z,t !5H(
mK

gm( k̄1K)
ck̄

am( k̄1K)~ t !eiKzJ . ~54!

The f c(z,t), which are envelope functions that modula
Bloch functions atk̄, are related to theam( k̄1K)e

iKz via the
1-6
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connections. Previous derivations of the NLSE would
quire the fieldL(z,t) to be separated as follows:

L~z,t !5 f m̄~z,t !um̄k̄~z!1 (
cÞm̄

f c~z,t !uck̄~z!1c.c., ~55!

where u f c(z,t)u!u f m̄(z,t)u, since the frequency content o
the field is assumed to be narrowly centered aroundvm̄k̄ .
The f cÞm(z,t) are typically called ‘‘companion’’ terms
while f m̄(z,t) is called the ‘‘principal’’ term. Using a method
presented elsewhere@5# it can be shown that the principa
term f m̄(z,t) obeys a dynamical equation analgous to E
~50!. However, we have verified that the Hamiltonian fro
which the dynamical equation of thef m̄(z,t) can be derived
is not equal to the energy in the electromagnetic field to
required order in perturbation theory.

We can use Eq.~54! to relate the envelope functio
f m̄(z,t) to the effective fieldg(z,t). We start by recognizing

that, usingk-p theory, thegm̄k
mk can be expanded as a Tayl

series

gm̄( k̄1K)
mk̄

511K~gm̄( k̄1K)
mk̄

!(1)1
1

2
K2~gm̄( k̄1K)

mk̄
!(2)1••• .

~56!

Using this, and recalling that since the frequency cont
of the pulse is confined to the bandm̄, so thatap( k̄1K)(t)
.0 if pÞm̄, we find

f m̄~z,t !5g~z,t !2 i ~gm̄( k̄1K)
mk̄

!(1)
]g~z,t !

]z

2
1

2
~gm̄( k̄1K)

mk̄
!(2)

]2g~z,t !

]z2
1•••, ~57!

where for envelope functions that vary slowly in space,
first term on the right-hand side of this equation will be mu
larger than the other terms.

Both the envelope functionf m̄(z,t) and the effective field
g(z,t) can be used to examine the evolution of the elec
magnetic field in a periodic medium. However, a derivati
of the propagation equation based on the effective field
the advantage that it extracts the linear pulse propaga
parameters directly from the dispersion relation. T
envelope-function technique generates complicated ove
integrals, which can subsequently be related to the lin
pulse propagation parameters taken from the dispersion
tion. We feel that this makes the effective field approa
clearer and simpler to use.

We close this section with a brief discussion on how
Maxwell boundary conditions apply to our theory. Th
theory in this paper assumes an infinite periodic mediu
Were the periodic medium not infinite, then one would ha
to apply the usual Maxwell boundary conditions, which, in
one-dimensional system, assert the continuity ofE and H
across the interface between the periodic medium and
adjacent medium. In the absence of nonlinearity, this
equivalent to asserting the continuity ofLz /(«0n2) andL t .
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Because our effective fields are constructed as Fourier su
positions of mode amplitudes that modulate Bloch functio
the boundary conditions may appear difficult to apply, sin
they would have to be applied to eachk point in a pulse.
However, we have shown in this section that, to first ord
the value ofg(z,t) is equal tof m̄(z,t), where the latter field
modulates only the Bloch functionum̄k̄(z). Therefore, to first
order, the boundary conditions can be applied as tho
g(z,t) modulated onlyum̄k̄(z), which is a straightforward
operation. We note that because we are considering a
dimensional system, where the fields are transverse, the
tinuity conditions that concern the normal component of
D andB fields are not relevant.

V. CONSERVED QUANTITIES OF THE HAMILTONIAN

We are now prepared to discuss the conserved quant
associated with the reduced Hamiltonian system descr
by Eq. ~47!. We first use Eq.~29! to exhibit the reduced
Hamiltonian~47! in terms of the Fourier modes of the effe
tive fields

HL
R5\v̄(

K
H gKgK

† 1
1

2

v̄8

v̄
~KgKgK

† 1c.c.!

1
1

2

v̄9

v̄
K2gKgK

† J , ~58!

HNL
R 52

1

2
a (

K1K2K3

gK1
gK2

† gK3
g(K12K21K32K4)

† .

We rewrite this reduced Hamiltonian in terms of the ne
coordinate and momentum variables, which in this probl
are real and can be written in terms of theg andg† as

fK[A \

2v̄
~gK

† 1gK!, ~59!

pK[ iA\v̄

2
~gK

† 2gK!.

Substituting these into Eq.~47! the reduced Hamiltonian be
comes

HR5
v̄

2 (
K

S v̄1v̄8K1
1

2
v̄9K2D S fK

2 1
pK

2

v̄
D

2
av̄2

8\2 (
K1K2K3

S fK1
1

ipK1

v̄
D S fK2

2
ipK2

v̄
D

3S fK3
1

ipK3

v̄
D S f (K12K21K3)2

ip (K12K21K3)

v̄
D ,

~60!

with equations of motion
1-7
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] tfK5
]HR

]pK
, ] tpK52

]HR

]fK
. ~61!

From Eq.~58! it is clear that the reduced Hamiltonian
invariant under the two infinitesimal transformations

gK→gKeis, ~62!

gK→gKeinK,

where it is assumed thats andnK are infinitesimal quanti-
ties. If we convert back to real space, we can identify the fi
transformation as expressing the phase invariance of ou
duced Hamiltonian, and the second expressing the tran
tional invariance. We note that the system itself does
possess full translational invariance. However, at the leve
the effective fields, the periodicity of the underlying structu
has been captured in the dispersion relation, and the effec
fields do possess translational invariance. In terms of the
coordinatesfK and pK , the two infinitesimal transforma
tions correspond to

fK→fK2r
1

v̄
pK , ~63!

pK→pK1v̄rfK ,

where r is either s or nK. We use the invariance of th
reduced Hamiltonian to construct the conserved quant
associated with these infinitesimal transformations. Unde
ther transformation

HR→HR1dHR,

dHR5(
K

H ]HR

]fK
dfK1

]HR

]pk
dpKJ

5(
K

rH 1

v̄

]pK

]t
pK1v̄

]fK

]t
fKJ

5
]

]t (
K

rH 1

v̄
pK

2 1v̄fK
2 J 50,

where we have used the equations of motion~61!, and where
we setdHR50 since the reduced Hamiltonian is invarian
We find two conserved quantities. The first, associated w
phase invariance, we call the chargeQ. The second, assoc
ated with translational invariance, we call the momentumP.
In Fourier space, the two conserved quantities have the v

Q5\v̄(
K

H 1

v̄
pK

2 1v̄fK
2 J 5\v̄(

K
gKgK

† ,

P5\
v̄8

c (
K

KH 1

v̄
pK

2 1v̄fK
2 J 5\

v̄8

c (
K

KgKgK
† .

Converting back to real space we find
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Q5\v̄E
2L/2

L/2

ugu2dz,

P5
i

2
\

v̄8

c E
2L/2

L/2

~g]zg
†2g†]zg!dz.

The reduced Hamiltonian can be written in terms of the c
served charge

HR5Q1H8 ~64!

with

H8[E
2L/2

L/2

dzS i\v̄8

2
~g]zg

†2c.c.!

2
1

2
\v̄9u]zgu22

1

2
augu4D , ~65!

whereH8 is obviously also conserved.
To understand the nature of these conserved quantities

consider the differential equation satisfied by theg field ~50!.
In the absence of group velocity, group velocity dispersion
nonlinearity (v̄85v̄95a50), the solution to the differen-
tial equation~50! is g(z,t)5g(z,0)e2 i v̄t. Whenv̄850, it is
clear thatP50. Furthermore, the phase accumulatione2 i v̄t

is directly related to the increase in timet so that the accu-
mulation of the time and phase are proportional. This me
that the reduced HamiltonianHR is identical to the chargeQ,
and we effectively have only one independent conser
quantity. If we allow group velocityv̄8Þ0, but keepv̄9
5a50, then the equation of motion~50! describes a pulse
that propagates at a speedv̄8, and does not distort its shap
We can solve the equations of motion asg(z,t)5g(z
2v̄8t,0)e2 i v̄t, from which it is clear that an increase in th
time variable is equivalent to a displacement in space plus
increase in the phase. That is, only two of the three displa
ments ~time, space and phase! are independent and henc
required to fully describe the effective field dynamics. Ass
ciated with this, one of the conserved quantities can be
pressed in terms of the other two,HR5Q1cP, which means
that only two of our three conserved quantities are indep
dent. Finally, if we place no restrictions on the coefficients
Eq. ~50! then there are no simple solutions to the equation
motion, and we find that the time, space, and phase displ
ments must be treated independently; and the three
served quantitiesHR,Q,P are independent. The indepen
dence of these quantities is forced upon us by
introduction of either the group velocity dispersion or t
Kerr nonlinearity, so the linear Schro¨dinger equation (a
50) will also have three independent conserved quanti
associated with time, space, and phase invariance.

To connect with the literature on nonlinear optical pul
propagation, we write ourg field as the product of a new
effective fieldr (z,t), which varies slowly in time as well as
space, and a carrier frequency,
1-8
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g~z,t !5r ~z,t !e2 i v̄t, ~66!

then

H85E
2L/2

L/2

dzS i\v̄8

2
~r ]zr

†2c.c.!

2
1

2
\v̄9u]zr u22

1

2
aur u4D , ~67!

and

@r ~z,t !,r †~z8,t !#5d~z2z8!, ~68!

which leads to

i ] tr 52 i v̄8]zr 2 1
2 v̄9]zzr 2aur u2r . ~69!

Although H8 correctly determines the dynamics of ther
fields, it is clearly not equal to the energy in the electrom
netic field. In previous discussions, the nonlinear Sch¨-
dinger equation~69! has been derived directly from Max
well’s equations, and ther fields—effective fields that vary
slowly in spaceand time—have been the primary fields o
interest@1–3,5#. It was observed that the quantityH8 could
be used in a Hamiltonian formulation, such that the corr
equations of motion~69! were derived@8,12#; but the quan-
tity H8 was clearly not equal to the energy of the syste
However, to comprehensively compare the approach in
paper to the approach in the literature@8,12# would require a
somewhat lengthy discussion about the relationship betw
the effective fields used in this paper, and the envelope fu
tions used elsewhere@8,12#. We defer such a discussion to
future paper.

Although we have discussed these conserved quantitie
the context of the NLSE, the concepts behind this extend
other nonlinear systems of interest. The coupled NLSEs
evant to birefringent systems are often derived from a Ham
tonian that is not equal to the energy@9,10#, as are the non-
linear coupled mode equations that describe periodic, K
media~both isotropic and birefringent@7#!. These equations
can all be derived using the methodology in this paper
Hamiltonian can be identified that is both equal to the ene
in the system, and which can be used to derive the cor
equations of motion.

VI. ON THE USE OF THE DUAL FIELD

The reduced Hamiltonian~47!, used in conjuction with
the commutation relations~32! and the equations of motio
~49!, gives a NLSE that describes pulse propagation i
periodic medium, under the restriction pointed out at the
ginning of Sec. III. A similar equation was derived by d
Sterkeet al. @5#. The advantage of the formulation in th
paper is that the reduced Hamiltonian is presented in a f
ready for quantization. However, since both papers arrive
the NLSE, it might be asked whether one could construc
canonical Hamiltonian using the formalism of de Ster
et al. rather than introducing the dual fieldL. In this section
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we point out the difference between these two approac
and show the advantages of using the dual field.

To construct their NLSE, de Sterkeet al. introduced a
formal vector field

AÄFA1

A2G ,
with

A6~z,t !5
1

2
An~z!FE~z,t !6

Z0

n~z!
H~z,t !G ,

wheren(z) is the index of refraction andZ05Am0 /«0 is the
impedance of the free space. In a Kerr nonlinear, perio
medium, the fieldA was shown to satisfy

n~z!
]A

]t
5cF 2

]

]z

1

2

n8

n

2
1

2

n8

n

]

]z

G •A2
1

2

x (3)~z!

n2~z!

]

]t

3$@A11A2#3%F1

1G , ~70!

wheren8(z)5dn(z)/dz. One can readily construct a quan
tity EA(A1,A2), which is equal to the energy in the electr
magnetic~e.m.! field. However, the construction of a canon
cal Hamiltonian in terms of the mode amplitudes of theA
field appears impossible. To show this, we first imagine t
one has constructed such a HamiltonianHA(ak), whereak
are the appropriate mode amplitudes of theA field, with ca-
nonical commutation relations. One would then apply t
Heisenberg equations of motion to find

i
dak

dt
5

1

\
@ak ,HA#. ~71!

The portion on the right-hand side will be some complica
combination of modesak . Unfortunately, the second term o
the right-hand side of Eq.~70! makes clear that the time
derivatives of the modesak must be expressed in terms o
combinations of modes and their time derivatives. Th
equations of motion of the form~71! cannot be exact, at leas
if there is the usual kind of linear expansion of the fields
terms of mode amplitudes. Nevertheless, if the nonlinea
itself is weak, then the nonlinear contribution to the tim
derivative,]A/]t will also be weak. Then, in the spirit o
perturbation, we could replace the time derivatives of
nonlinear portion of Eq.~70! by their linear value. This strat
egy allows the construction of a Hamiltonian formulation
Maxwell’s equations in the presence of a weak nonlinear
We have verified that such a Hamiltonian can, indeed,
constructed, but we do not present the results here.

The Hamiltonian generated by the use of theA field is of
as much practical value as that generated by the use o
dual fieldL. The advantage of the dual field formulation
that once a form of the functionU(D) is chosen, no further
approximations need to be made. Thus, for the investiga
1-9
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of the formal properties of the Hamiltonian system the d
field approach is more useful, while for the calculation
experimental quantities either approach will work.

VII. CONCLUSION

We have constructed a canonical Hamiltonian formulat
for light in a nonlinear, periodic Kerr medium, with the a
propriate frequency content such that the NLSE is the
evant equation of motion. To do so, we have introduce
reduced Hamiltonian that is equal to the energy in the e
tromagnetic field to the required order in perturbation theo
Using the reduced Hamiltonian we investigated the c
served quantities of the system. In addition to the fami
energy and momentum, we identified a conserved charge
sociated with phase invariance. In a future paper we w
m
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explore the connection between this conserved charge
the ‘‘energy’’ given in other papers in the literature. A clar
fication of the energy of the system is necessary for the p
pose of canonical quantization. To underscore the use of
Hamiltonian formulation in quantization of the fields, w
have presented Hamilton’s equation of motion in terms
canonical commutation relations, although we stress that
results in this paper are purely classical. In a future work
will return to the quantization of the e.m. field in a periodi
Kerr-nonlinear medium.
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